Use of MITF (Microphthalmia-Associated Transcription Factor) Immunostain for Diagnosis of Desmoplastic Melanoma

Jeff F. Wang M.D.
Department of Pathology
Creighton University Medical Center
Omaha Nebraska USA

Bo Wang M.D.
Department of Pathology
Creighton University Medical Center
Omaha Nebraska USA

James M. Shehan M.D.
Division of Dermatology
Department of Medicine
Creighton University Medical Center
Omaha Nebraska USA

Deba P. Sarma M.D.
Department of Pathology
Creighton University Medical Center
Omaha Nebraska USA

Citation: J. F. Wang, B. Wang, J. M. Shehan & D. P. Sarma : Use of MITF (Microphthalmia-Associated Transcription Factor) Immunostain for Diagnosis of Desmoplastic Melanoma. The Internet Journal of Dermatology, 2008 Volume 6 Number 2

Keywords: Desmoplastic melanoma | MITF | S-100

Abstract

We are reporting a case of desmoplastic malignant melanoma that was confirmed by immunostaining for microphthalmia-associated transcription factor (MITF). A brief review of utility of MITF for diagnosis of melanoma is presented.

Case Report

An 81-year-old male presented with a posterior parietal scalp lesion measuring 9 mm in greatest dimension. The lesion was a yellow crusted raised nodule presenting for an unknown period of time. Examination of the face, anterior neck and chest revealed a number of blue-black macules some of which were friable. The patient denied any history of sun exposure as a child. The patient also admitted to light occupational sun exposure but for the last 6 months wore a sun visor to protect his face from the sun. There was no history of melanoma in this patient or in the patient’s family. The patient had been treated for pre-existing drusen in his right eye and was taking steroids for bilateral cataracts. The patient was an otherwise healthy 81-year-old male. He was not currently on any medications.

The lesion was excised with a 1 cm margin of adjacent skin on all sides. The specimen was fixed in 10% formalin, routinely processed, and paraffin-embedded. The section was oriented in a bit of difficulty because the overlying epidermis was acanthotic and corrugated. The dermis was moderately cellular and was composed of pleomorphic spindle shaped cells arranged singly or in thin fascicles within a prominent collagenous or, less commonly, myxoid stroma. The dermis extended to the deep margin of biopsy. The epidermis showed acute neutrophilic keratitis, crusting, and hyperkeratosis but no melanocytic nesting or dysplasia. Additional published articles demonstrate that MITF protein within a melanocytic cell is sensitive and specific for melanoma diagnosis.

Figure 1: Desmoplastic melanoma

Keywords: Melanoma | Desmoplastic melanoma | MITF

Microscopically, desmoplastic melanoma appears as a poorly circumscribed neoplasm of variable size, that in some cases extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of spindle shaped cells arranged singly or in thin fascicles. The overlying epidermis may or may not show any signs of dysplasia. Routine immunostaining of spindle medial tumors may be helpful in distinguishing desmoplastic/spindle cell melanoma from morphologic mimic.

Figure 2: Immunostain, S100 is positive for desmoplastic melanoma

We are reporting a case of desmoplastic malignant melanoma that was confirmed by immunostaining for MITF. The case is that of an 81-year-old male with a subcutaneous nodule on the right parietal scalp measuring 9 mm in greatest dimension. The lesion was excised with a 1 cm margin of adjacent skin on all sides. The specimen was fixed in 10% formalin, routinely processed, and paraffin-embedded. The section was oriented in a bit of difficulty because the overlying epidermis was acanthotic and corrugated. The dermis was moderately cellular and was composed of pleomorphic spindle shaped cells arranged singly or in thin fascicles within a prominent collagenous or, less commonly, myxoid stroma. The overlying epidermis showed acute neutrophilic keratitis, crusting, and hyperkeratosis but no melanocytic nesting or dysplasia. Additional published articles demonstrate that MITF protein within a melanocytic cell is sensitive and specific for melanoma diagnosis.

Figure 3: Immunostains, HMB-45 and MITF

Figure 4: Immunostain, S100

Figure 5: Immunostain, MITF is positive for desmoplastic melanoma

Keywords: Melanoma | Desmoplastic melanoma | MITF

Microscopically, desmoplastic melanoma appears as a poorly circumscribed neoplasm of variable size, that in some cases extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of spindle shaped cells arranged singly or in thin fascicles. The overlying epidermis may or may not show any signs of dysplasia. Routine immunostaining of spindle medial tumors may be helpful in distinguishing desmoplastic/spindle cell melanoma from morphologic mimic.

Keywords: Melanoma | Desmoplastic melanoma | MITF

Microscopically, desmoplastic melanoma appears as a poorly circumscribed neoplasm of variable size, that in some cases extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of spindle shaped cells arranged singly or in thin fascicles. The overlying epidermis may or may not show any signs of dysplasia. Routine immunostaining of spindle medial tumors may be helpful in distinguishing desmoplastic/spindle cell melanoma from morphologic mimic.

Keywords: Melanoma | Desmoplastic melanoma | MITF

Microscopically, desmoplastic melanoma appears as a poorly circumscribed neoplasm of variable size, that in some cases extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of spindle shaped cells arranged singly or in thin fascicles. The overlying epidermis may or may not show any signs of dysplasia. Routine immunostaining of spindle medial tumors may be helpful in distinguishing desmoplastic/spindle cell melanoma from morphologic mimic.
The biopsied lesion of the scalp showed a dermal spindle cell malignant neoplasm extending from the basal membrane to the deep margin of biopsy. The epidermis showed acute neutrophilic keratitis, crusting, and hyperkeratosis but no ulceration or epidermal dysplasia [Fig 1]. The dermal neoplastic cells showed significant polymorphism with dark hyperchromatic nuclei and prominent enlarged nucleoli with perinucleolar halo [Fig 2]. There was marked desmoplastic reaction in the dermis with spindle or ovoid neoplastic cells evenly distributed among the fibroblastic and vascular stroma. Numerous mitoses and atypical mitoses were identified. The neoplastic cells were strongly positive for S-100 [Fig 4] and MITF [Fig 5] but were negative for HMB-45 and Mart-1 [Fig 3].

Figure 1: Desmoplastic melanoma, low magnification

Figure 2: Desmoplastic melanoma, higher magnification
Use of MITF (Microphthalmia-Associated Transcription Factor) in the diagnosis of melanoma

J. Wang, JF, Sarma DP, Ulmer P.

3. Wang JF, Sarma DP, Ulmer P.

4. Yaziji H, Gown AM.

Desmoplastic/spindle cell melanoma is a rare subtype of melanoma and is usually found on the head and neck region as a wart. It is responsible for 80 percent of deaths from skin malignancy.

Melanoma can be categorized into five basic types: invasive, superficial spreading, lentigo maligna, nodular, and desmoplastic/spindle cell. Desmoplastic melanoma is a subtype of melanoma that lacks a dermal stromal reaction. It is a rare subtype of melanoma and is usually found on the head and neck region as a wart.

Figure 1: Desmoplastic melanoma, low magnification

Figure 2: Immunostain, S100 is positive for desmoplastic melanoma

Figure 3: Immunostains, HMB-45 and Mart-1 are negative for melanoma

Figure 4: Immunostain, S100 is positive for desmoplastic melanoma

Approximately one half of desmoplastic melanomas develop in association with a lentigo maligna. Desmoplastic melanomas often spread perineurally causing pain. Most melanoma may present clinically as a pigmented macule with or without a nodular component or a flesh colored nodule without any surrounding pigmentation.

Desmoplastic melanomas are often vascular stromal tumors that extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of small, plump, round to ovoid melanocytic cells. The infiltrates range from nodular or nodular to diffuse, nonepidermotropic, occasionally extend into epidermal appendages. The overlying epidermis may or may not show any melanocytic nesting or dysplasia. Routine immunostaining for Melanoma Black 45 (HMB-45) or MART-1 was negative in the neoplastic cells suggesting that the neoplastic spindle cells were melanocytic rather than neural in origin.

The MITF protein, which is a key regulator of melanocytic proliferation, differentiation, and survival, is important in melanoma biology. The MITF protein is overexpressed in malignant melanoma cells stained positively for MITF with a nuclear pattern of reactivity. MITF staining was positive in all cases of malignant melanoma. The MITF protein, which subsequently enhances the expression of BCL-2, is a key antiapoptotic component. It also regulates the transcription of specific genes associated with melanocytic tumors.

Keywords: Melanoma, Desmoplastic melanoma, MITF, Immunohistochemistry, Prognosis.

Citation: Wang JF, Sarma DP, Ulmer P. Use of MITF (Microphthalmia-Associated Transcription Factor) in the diagnosis of melanoma. The Internet Journal of Dermatology, 2008; 6(2), 45-50.

Omaha, NE 68131
Creighton University Medical Center
Department of Pathology
Deba P. Sarma, MD
Correspondence to: debapsarma@creighton.edu

Debasarma P.
American Journal of Pathology 155(3): 731-738, 1999

Immunohistochemical markers of melanocytic tumors. A brief review of utility of MITF for diagnosis of melanoma is provided.
Discussion

Melanoma is the most serious form of skin cancer. Although it accounts for only 4 percent of all dermatologic cancers, it is responsible for 80 percent of deaths from skin malignancy. Melanoma can be categorized into five basic types: superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma, acral lentiginous melanoma, and desmoplastic melanoma. Superficial spreading melanoma is the most common type of melanoma, accounting for 70% of melanoma cases in United States. As its name indicates, it grows superficially and develops irregular borders with a variegated color including white, pink, brown, and black. Nodular melanoma is the most aggressive type of melanoma, accounts for about 15% of all melanoma in United States. It has unique features compared with other type of melanoma: 1) it tends to grow more rapidly in thickness, 2) may not have obvious developmental stage, 3) lentigo maligna melanoma occurs mostly on sun-damaged skin, especially on the face, neck. This melanoma may mimic benign “age spot” or “sun spot” so it could go undetected for many years. Acral lentiginous melanoma is also called “hidden melanoma” because it is located on the palms, soles, mucous membranes, and underneath nail. It is often overlooked until it is well advanced because in the early stages, it often looks like a bruise or nail streak, even plantar wart.

Desmoplastic melanoma is a rare subtype of melanoma and is usually found on the head and neck region as a spreading plaque. Sometimes, the desmoplastic melanoma is found only in the recurrence or in the metastases of more common types of melanoma. Desmoplastic melanoma has a male predominance ratio of approximately 2:1. Approximately one half of desmoplastic melanomas develop in association with a lentigo maligna. Desmoplastic melanoma may present clinically as a pigmented macule with or without a nodular component or a flesh-colored nodule without any surrounding pigmentation. Desmoplastic melanomas often spread perineurally causing pain. Most desmoplastic melanomas are deeply invasive at the time of diagnosis.

Microscopically, desmoplastic melanoma appears as a poorly circumscribed neoplasm of variable size, that in some cases extend into subcutaneous tissue, fascia and nerves. It is characterized by dermal and/or subcutaneous infiltrates of spindle-shaped cells arranged singly or in thin fascicles within a prominent collagenous or, less commonly, myxoid stroma. The overlying epidermis may or may not show any melanocytic nesting or dysplasia. Routine immunostaining by HMB-45 and MART-1 is usually negative. The spindle neoplastic cells are usually positive for S-100 protein indicating a neural or melanocytic type of cell. The melanocytic nature of the cells can be confirmed by positive staining for MITF.

Microphthalmia-associated transcription factor (MITF) is a melanocyte-specific transcriptional factor that plays a key role in melanocyte development, survival and differentiation. MITF appears to contribute to melanocyte survival by increasing the expression of the BCL-2 gene, a key antiapoptotic component. It also regulates the transcription of silver homologue (SILV) the melanocytic-specific genes.
Melan-A (MLANA), whose immunohistochemical detection points to the diagnosis of melanoma. Malignant melanocytic cells possess increased copy number of MITF locus. This increase is accompanied by the amplification of the MITF protein, which subsequently enhances the expression of BCL-2 gene. King et al. first reported that 100% malignant melanoma cells stained positively for MITF with a nuclear pattern of reactivity. MITF staining was positive for 76 specimens of melanoma that failed to stain for either HMB-45 or S-100. We recently reported a case of nodular malignant melanoma that was positive only for MITF. Additional published articles also demonstrate that MITF is a more sensitive and specific tumor marker than traditional HMB-45 or S-100. MITF also has shown excellent sensitivity for desmoplastic/spindle-cell melanoma.

In our case, the presence of infiltrating pleomorphic neoplastic cells that stained positively for S-100 protein within a markedly desmoplastic stroma suggested a possible desmoplastic melanoma. MITF, a nuclear stain for melanoma cells was positive in the neoplastic cells suggesting that the neoplastic spindle cells were melanocytic rather than neural type.

Correspondence

Deba P. Sarma, MD
Department of Pathology
Creighton University Medical Center
Omaha, NE 68131
[debasarma@creighton.edu]

References

3. Wang JF, Sarma DP, Ulmer P. Diagnostic dilemma: HMB-45 and Melan-A negative tumor, can it be still a melanoma?: MITF (Microphthalmia-associated transcription factor) stain may confirm the diagnosis. The Internet Journal of Dermatology Volume 5 Number 1, 2007

This article was last modified on Fri, 13 Feb 09 13:23:03 -0600

This page was generated on Mon, 16 Nov 09 11:55:17 -0600, and may be cached.